Latin American and Caribbean Internet Addresses Registry Registro de Direcciones de Internet para América Latina y Caribe Registro de Endereços da Internet para América Latina e Caribe

An Overview of DNSSEC

August 04, 2011. Carlos Martínez-Cagnazzo carlos @ lacnic.net

- Cryptography 101
- DNSSEC
- Where DNSSEC ?
- How does DNSSEC work ?
- New Resource Records
- Trust Chains

CRYPTOGRAPHY

Cryptography

- Cryptography concepts we'll need for DNSSEC
 - Public-key Cryptography
 - Hashing algorithms
 - Digital signatures
 - Trust Chains

Cryptography (ii)

- Let's imagine two parties which need to communicate in a private manner. They will like to see certain properties enforced in their data exchanges.
 - They'd like to be sure that no one else has been able to read their messages (privacy property)
 - They'd like to be sure that no one else has been able to change or alter their messages (integrity property)
 - They'd like to be sure that the party who sends a message is really who it claims to be (authentication property)

Symmetric Cryptography

- H is a transformation with the following properties
 - ◆ p << n</p>
 - For each algorithm "p" is a given value
 - len(H) is fixed regardless of len(M)
- This means that *collisions* do exist
 - Collision: If for a pair M1 and M2, H(M1) == H(M2), then M1 and M2 represent a collision
 - If H() is chosen and designed carefully then finding collisions is very difficult

- Intuitively
 - The more "random" the result of a hash "looks", the better it is
- Some well-known algorithms:
 - MD5
 - 128 bits
 - SHA1 / SHA256
 - 160 / 256 bits

Public-key Cryptography

- Key distribution was always the weak point in traditional (symmetric) cryptography
- A lot effort was put to find workarounds and alternatives
- Breakthrough: (*Diffie-Hellman ca. 1976*) "Public-key Cryptography"
- A public-key cryptosystem has the following properties:
 - ▶ D_{K1}[E_{K2} [X]] = X
 - D cannot be easily found even if E is known
 - E cannot be broken with a chosen plaintext attack

Public-key Cryptography (ii)

- Each party generates a keypair, that is one public and one secret key Private key Public key
 - Kpub, Kpriv
 - Both keys in the pair are related
 - If one is given the other is also given
- When transmitting a message "X" from A -> B the following computation takes place:
 - Y = E [Kpub_B, X]
- When B receives the encrypted message the following computation takes place:
 - X' = D[Kpriv_p, Y]

Public-key Cryptography (iii)

• [Source: Stallings]

Digital Signatures

- Goal:
 - Create integrity proofs of digital documents
- Usually

 implemented usin
 public-key
 cryptography

Digital Signatures (iii)

- Given M, a digital document to be signed by party A(lice) to be received by party B(ob)
 - A computes:
 - A hash for M, H = Hash[M]
 - A signature for M, F = E[Kpriv_A, H]
 - A sends the pair {M, F} to B
- When B receives the encrypted message the following computation takes place:
 - A hash for M, H' = Hash[M]
 - The hash of the signature is recalculated, H = D[Kpub_A,
 F]

Digital Signatures (iii)

- Trust Chains
 - Each level in the hierarchy signs data in the next one
 - The root needs to be analyzed separately
 - Validation can be either
 - Top down
 - Up down

DNSSEC: MOTIVATION

Protocol Specification

- Overview of DNS's wire packet format
 - Header
 - Protocol header
 - Flags (QR, RA, RD,...)
 - Question Section
 - Query we send to the DNS server
 - Tuples (Name, Type, Class)
 - Answer Section
 - RRs that answer the query (if any are available), also in (N, T, C) tuple format
 - Authority Section
 - RRs pointing to authoritative servers (optional)
 - Additional Section
 - RRs that may be useful to the querying client (according to the server answering the query)

Attack Vectors in DNS

Vulnerabilities in DNS

- DNS transmitted data is more prone to spoofing as it is mostly transported over UDP
 - Between master and slaves (AXFR)
 - Between masters and clients (AXFR) "resolver"
- Currently the DNS protocol does not have a way to validate information found in a query response
 - Vulnerable to different *poisoning* techniques
 - Poisoned data can be a problem for long periods of time depending on the TTL values of the zones
- Neither do slave servers have a way to authenticate the master servers they're talking to

Introducing DNSSEC

- Threat analysis in the DNS system
 - RFC 3833: "Threat Analysis of the Domain Name System (DNS)"
- DNSSEC:
 - "DNS Security Extensions"
 - RFC 4033, 4034, 4035
 - ~ May 2005

What does DNSSEC Protect us from?

- DNSSEC will protect us from data corruption and spoofing
 - It provides a way to validate both the integrity and the authenticity of the records contained in a DNS zone
 - DNSKEY/RRSIG/NSEC
 - It provides a way to delegate trust in public keys (trust chains)
 - DS

- It provides a way to authenticate zone transfers between masters and slaves
 - TSIG

- DNSSEC is not a new protocol
- Is a set of extensions to the DNS protocol as we know it
 - Changes to the wire protocol (EDNS0)
 - Maximum UDP query response extended from 512 to 4096 bytes
 - New resource records added
 - RRSIG, DNSKEY, DS, NSEC
 - New flags added
 - Checking Disabled (CD)
 - Authenticated Data (AD)

DNSSEC Introduction (2)

- New RRs
 - RRSIG: Resource Record Signature
 - DNSKEY: DNS Public Key
 - DS: Delegation Signer
 - NSEC: Next Secure
- New Flags:
 - AD: authenticated data
 - CD: checking disabled

DNSSEC Introduction (3)

- A resource record in DNS is a five-value tuple
 - (name, class, type, TTL, value)
- The record:
 - www.company.com. 86400 IN A 200.40.100.141
 - Is represented by the tuple:
 - Name (www.company.com)
 - Class (IN)
 - Type (A)
 - TTL (86400 seconds)
 - Value (200.40.100.141)

DNSSEC Introduction (4)

- Resource Record Sets (RRSets)
 - DNSSEC works by signing RRSets (not individual RRs)
 - An RRSet is a set of resource records that share the same:
 - Class
 - Type
 - Name
- Sample RRSet (TTL omitted for clarity)
 - www IN A 200.40.241.100
 - www IN A 200.40.241.101

DNSSEC Introduction (5) Zone Signing A key pair is created for each zone

- - Each zone has at least one key pair
 - The private key is kept, well, private
 - The private key is used to sign the RRSets in the zone
 - The public key is published in DNS using DNSKEY records
 - The private key is also used to verify the signatures of the **RRSets**
 - An RRSet can have multiple signatures generated using different key pairs

LACN

DNSSEC Introduction (6)

- The digital signature of a RRSet is returned in a special RRSIG record with the query answer
- Example:
 - ~ carlosm\$ dig +dnssec www.nic.se
 - ;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 4, ADDITIONAL: 1

;; ANSWER SECTION: www.nic.se. 60 IN A 212.247.7.218 www.nic.se. 60 IN RRSIG A 5 3 60 20101021132001 20101011132001 23369 nic.se. HeeUZ5h5iExK5uU1SuNRIf2Dbmh2/ aWV8FkjmzixUzTAVrHv39PfmfnG DHdHoZxoz85hqqYiWb +t9EZh5+iqxQk8AxRDic9Nn6Wxif0oWeS+IUKQ rVyqXf1NtkZvu1A325vwa8obtbeVGVkhqg6bDIjKYeHixjlQ4cRoFcEW Izk=

;; AUTHORITY SECTION:

nıc.se.	2974	LΝ	NS	ns3.nlC.se.	
nic.se.	2974	IN	NS	ns2.nic.se.	
nic.se.	2974	IN	NS	ns.nic.se.	
nic.se.	3600	IN	RRSIG	NS 5 2 3600	
20101021132001 2010	1011132001	2336	9 nic.se.	GSzAUC3SC3D0G/	
iesCOPnVux8WkQx1dGbw491RatXz53b7SY0pQuyT1W					
eb063Z62rtX7etynNcJwpKlYTG9FeMbDceD9af3KzTJHxq6B+Tpmmxyk					
FoKAVaV0cHTcGUXS0bF	quGr5/03G79	9C/YH	JmXw0bHun5	5ER5yr0t0LegU IAU=	27

Trust Chains

- How do clients verify a zone's RRSets?
 - It queries for the corresponding DNSKEY
 - The necessary computations are carried out and then compared with the signature in the RRSIG
 - If they match the signatures are valid
- But, how can we trust the DNSKEY? It listed on the same zone we want to verify!
 - We need to validate the trust chain

Trust Chains (ii)

- DS Record "Delegation Signature"
 - DS records "sign" the keys in their child zones
 - In this way one can also verify the DNSKEY as it is signed when the parent zone is signed
- DS records contain a hash of the public key
 - That is a hash of the DNSKEY's record content
- DS records in the parent zone are signed with the keys of the parent zone
- To complete the full trust chain we also need the root of the DNS to be signed

Trust Chains (iii)

- What about the root zone ?
 - The root zone has no parent zone where a DS record could be placed
 - The DNS root has been signed since July 2010
 - [<u>http://www.root-dnssec.org</u>]
 - The DS record for "." is obtained out-of-band and installed locally in each server
 - [<u>http://data.iana.org/root-anchors/root-anchors.xml</u>]
 - . IN DS 49AAC11D7B6F6446702E54A1607371607A1A41855200F D2CE1CDDE32F24E8FB5

DNSSEC Introduction (9) Root Zone Signing

- How is the the root trust anchor verified?
- It is verified also out-of-band
 - It can be downloaded using http/https
 - Several validation mechanisms are in place (X.509 certs, PGP signatures)
 - It is locally installed in the same way the root zone itself is configured locally

DNSSEC Introduction (10) Denial of Existence

- "NXDOMAIN" answers
 - Provide "denial of existence" answers via a flag on the "Header" pseudo-section
 - NXDOMAINS are cached in the same way as other responses are
 - Forging NXDOMAINs is a DDoS attack vector
- How can non-existence be signed ?
 - We need an RRSet to sign
 - Remember that DNSSEC always signs RRSets
 - Two different techniques have been proposed:
 - NSEC and NSEC3

Latin American and Caribbean Internet Addresses Registry Registro de Direcciones de Internet para América Latina y Caribe Registro de Endereços da Internet para América Latina e Caribe

Thank You!

Questions?